Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(2): 106001, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866042

RESUMO

Planarians possess naturally occurring pluripotent adult somatic stem cells (neoblasts) required for homeostasis and whole-body regeneration. However, no reliable neoblast culture methods are currently available, hindering mechanistic studies of pluripotency and the development of transgenic tools. We report robust methods for neoblast culture and delivery of exogenous mRNAs. We identify optimal culture media for the short-term maintenance of neoblasts in vitro and show via transplantation that cultured stem cells retain pluripotency for two days. We developed a procedure that significantly improves neoblast yield and purity by modifying standard flow cytometry methods. These methods enable the introduction and expression of exogenous mRNAs in neoblasts, overcoming a key hurdle impeding the application of transgenics in planarians. The advances in cell culture reported here create new opportunities for mechanistic studies of planarian adult stem cell pluripotency, and provide a systematic framework to develop cell culture techniques in other emerging research organisms.

2.
Cell Rep Methods ; 2(10): 100298, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36313809

RESUMO

Planarians have long been studied for their regenerative abilities. Moving forward, tools for ectopic expression of non-native proteins will be of substantial value. Using a luminescent reporter to overcome the strong autofluorescence of planarian tissues, we demonstrate heterologous protein expression in planarian cells and live animals. Our approach is based on the introduction of mRNA through several nanotechnological and chemical transfection methods. We improve reporter expression by altering untranslated region (UTR) sequences and codon bias, facilitating the measurement of expression kinetics in both isolated cells and whole planarians using luminescence imaging. We also examine protein expression as a function of variations in the UTRs of delivered mRNA, demonstrating a framework to investigate gene regulation at the post-transcriptional level. Together, these advances expand the toolbox for the mechanistic analysis of planarian biology and establish a foundation for the development and expansion of transgenic techniques in this unique model system.


Assuntos
Planárias , Animais , Planárias/genética , RNA Mensageiro/genética , Mediterranea/metabolismo , Modelos Biológicos , Transfecção
3.
Nature ; 606(7913): 329-334, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650439

RESUMO

The sexual strain of the planarian Schmidtea mediterranea, indigenous to Tunisia and several Mediterranean islands, is a hermaphrodite1,2. Here we isolate individual chromosomes and use sequencing, Hi-C3,4 and linkage mapping to assemble a chromosome-scale genome reference. The linkage map reveals an extremely low rate of recombination on chromosome 1. We confirm suppression of recombination on chromosome 1 by genotyping individual sperm cells and oocytes. We show that previously identified genomic regions that maintain heterozygosity even after prolonged inbreeding make up essentially all of chromosome 1. Genome sequencing of individuals isolated in the wild indicates that this phenomenon has evolved specifically in populations from Sardinia and Corsica. We find that most known master regulators5-13 of the reproductive system are located on chromosome 1. We used RNA interference14,15 to knock down a gene with haplotype-biased expression, which led to the formation of a more pronounced female mating organ. On the basis of these observations, we propose that chromosome 1 is a sex-primed autosome primed for evolution into a sex chromosome.


Assuntos
Evolução Molecular , Ilhas , Planárias , Reprodução , Cromossomos Sexuais , Animais , Mapeamento Cromossômico , Feminino , Genoma/genética , Endogamia , Masculino , Planárias/genética , Cromossomos Sexuais/genética
4.
Dev Biol ; 488: 47-53, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580728

RESUMO

In the 20th century, developmental biology spearheaded a revolution in our understanding of complex biological problems. Its success rests in great part on a truly unique approach that has recruited a diversity of systems and research organisms rather than focusing on isolated cells or molecules, while also employing a wide variety of technological and intellectual approaches. But what will developmental biology contribute to this century? Advances in technology and instrumentation are presently moving at neck-breaking speed and herald the advent of an age of technological wonders in which previously inaccessible biology is now tangibly within our grasps. For instance, single-cell RNAseq has revealed novel, transient cell states in both stem and differentiated cells that are specified by defined changes in gene expression frequency during regeneration. Additionally, genome-wide epigenetic analyses combined with gene editing and transgenic methodologies have identified the existence of regeneration responsive enhancers in adult vertebrate tissues. These circumstances combined with our discipline's diversity of experimental and intellectual approaches offer unimaginable opportunities for developmental biologists not only to discover new biology but also to reveal entirely new principles of biology.


Assuntos
Biologia , Edição de Genes , Biologia do Desenvolvimento , História do Século XXI
5.
Curr Top Dev Biol ; 147: 307-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35337453

RESUMO

Understanding the remarkable regenerative abilities of freshwater planarians was a classic problem of developmental biology. These animals were widely studied until the late 1960s, when their use as experimental subjects declined precipitously after some infamous experiments on memory transfer. By the mid-1990s, only a handful of laboratories worldwide were investigating the mechanisms of planarian regeneration. Here, we provide the personal stories behind our work to reinvigorate studies of these fascinating animals. We recount many of the challenges that had to be overcome and reflect on some of the fortuitous events that helped launch the planarian Schmidtea mediterranea as a model organism for studying the molecular basis of regeneration.


Assuntos
Planárias , Animais , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34750171

RESUMO

For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate. However, we still have a very incomplete understanding of how broadly regenerative abilities may be dispersed across species and whether or not such properties share a common evolutionary origin, which may have emerged independently or both. Understanding regeneration, therefore, will require rigorously practiced fundamental, curiosity-driven, discovery research. Expanding the number of research organisms used to study regeneration allows us to uncover aspects of this problem we may not yet know exist and simultaneously increases our chances of solving this long-standing problem of biology.

7.
J Vis Exp ; (175)2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34570108

RESUMO

Accessibility to germ cells allows the study of germ cell development, meiosis, and recombination. The sexual biotype of the freshwater planarian, Schmidtea mediterranea, is a powerful invertebrate model to study the epigenetic specification of germ cells. Unlike the large number of testis and male germ cells, planarian oocytes are relatively difficult to locate and examine, as there are only two ovaries, each with 5-20 oocytes. Deeper localization within the planarian body and lack of protective epithelial tissues also make it challenging to dissect planarian ovaries directly. This protocol uses a brief fixation step to facilitate the localization and dissection of planarian ovaries for downstream analysis to overcome these difficulties. The dissected ovary is compatible for ultrastructural examination by transmission electron microscopy (TEM) and antibody immunostaining. The dissection technique outlined in this protocol also allows for gene perturbation experiments, in which the ovaries are examined under different RNA interference (RNAi) conditions. Direct access to the intact germ cells in the ovary achieved by this protocol will greatly improve the imaging depth and quality and allow cellular and subcellular interrogation of oocyte biology.


Assuntos
Planárias , Animais , Dissecação , Feminino , Células Germinativas , Masculino , Ovário , Coloração e Rotulagem
8.
Nat Cell Biol ; 23(9): 939-952, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34475533

RESUMO

Regeneration requires the coordination of stem cells, their progeny and distant differentiated tissues. Here, we present a comprehensive atlas of whole-body regeneration in Schmidtea mediterranea and identify wound-induced cell states. An analysis of 299,998 single-cell transcriptomes captured from regeneration-competent and regeneration-incompetent fragments identified transient regeneration-activated cell states (TRACS) in the muscle, epidermis and intestine. TRACS were independent of stem cell division with distinct spatiotemporal distributions, and RNAi depletion of TRACS-enriched genes produced regeneration defects. Muscle expression of notum, follistatin, evi/wls, glypican-1 and junctophilin-1 was required for tissue polarity. Epidermal expression of agat-1/2/3, cyp3142a1, zfhx3 and atp1a1 was important for stem cell proliferation. Finally, expression of spectrinß and atp12a in intestinal basal cells, and lrrk2, cathepsinB, myosin1e, polybromo-1 and talin-1 in intestinal enterocytes regulated stem cell proliferation and tissue remodelling, respectively. Our results identify cell types and molecules that are important for regeneration, indicating that regenerative ability can emerge from coordinated transcriptional plasticity across all three germ layers.


Assuntos
Células Epidérmicas/citologia , Regeneração/fisiologia , Células-Tronco/metabolismo , Animais , Mediterranea/metabolismo , Interferência de RNA/fisiologia , Transcriptoma/fisiologia
9.
Mol Cell Proteomics ; 20: 100137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34416386

RESUMO

The extracellular matrix (ECM) is a three-dimensional network of macromolecules that provides a microenvironment capable of supporting and regulating cell functions. However, only a few research organisms are available for the systematic dissection of the composition and functions of the ECM, particularly during regeneration. We utilized the free-living flatworm Schmidtea mediterranea to develop an integrative approach consisting of decellularization, proteomics, and RNAi to characterize and investigate ECM functions during tissue homeostasis and regeneration. ECM-enriched samples were isolated from planarians, and their proteomes were characterized by LC-MS/MS. The functions of identified ECM components were interrogated using RNA interference. Using this approach, we found that heparan sulfate proteoglycan is essential for tissue regeneration. Our strategy provides an experimental approach for identifying both known and novel ECM components involved in regeneration.


Assuntos
Matriz Extracelular Descelularizada , Planárias , Regeneração , Animais , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteoglicanas de Heparan Sulfato , Homeostase , Planárias/genética , Planárias/metabolismo , Planárias/fisiologia , Proteoma , Interferência de RNA
10.
Development ; 148(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318308

RESUMO

As the planarian research community expands, the need for an interoperable data organization framework for tool building has become increasingly apparent. Such software would streamline data annotation and enhance cross-platform and cross-species searchability. We created the Planarian Anatomy Ontology (PLANA), an extendable relational framework of defined Schmidtea mediterranea (Smed) anatomical terms used in the field. At publication, PLANA contains over 850 terms describing Smed anatomy from subcellular to system levels across all life cycle stages, in intact animals and regenerating body fragments. Terms from other anatomy ontologies were imported into PLANA to promote interoperability and comparative anatomy studies. To demonstrate the utility of PLANA as a tool for data curation, we created resources for planarian embryogenesis, including a staging series and molecular fate-mapping atlas, and the Planarian Anatomy Gene Expression database, which allows retrieval of a variety of published transcript/gene expression data associated with PLANA terms. As an open-source tool built using FAIR (findable, accessible, interoperable, reproducible) principles, our strategy for continued curation and versioning of PLANA also provides a platform for community-led growth and evolution of this resource.


Assuntos
Planárias/anatomia & histologia , Planárias/genética , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ontologia Genética , Estágios do Ciclo de Vida/genética , Regeneração/genética , Software
11.
Elife ; 102021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34286692

RESUMO

Image-based cell classification has become a common tool to identify phenotypic changes in cell populations. However, this methodology is limited to organisms possessing well-characterized species-specific reagents (e.g., antibodies) that allow cell identification, clustering, and convolutional neural network (CNN) training. In the absence of such reagents, the power of image-based classification has remained mostly off-limits to many research organisms. We have developed an image-based classification methodology we named Image3C (Image-Cytometry Cell Classification) that does not require species-specific reagents nor pre-existing knowledge about the sample. Image3C combines image-based flow cytometry with an unbiased, high-throughput cell clustering pipeline and CNN integration. Image3C exploits intrinsic cellular features and non-species-specific dyes to perform de novo cell composition analysis and detect changes between different conditions. Therefore, Image3C expands the use of image-based analyses of cell population composition to research organisms in which detailed cellular phenotypes are unknown or for which species-specific reagents are not available.


Cells are the building blocks of all living organisms. They come in many types, each with a different role. Understanding the composition of cells, i.e., how many cells and which types of cells are present inside an organ can indicate what that organ does. It can also reveal how that organ changes under different conditions, like during an infection or treatment. The most powerful methods for studying cells work well for species researchers already know a lot about, such as mice, zebrafish or humans, but not for less studied animals. To change this Accorsi, Box, Peuß et al. created a new tool called Image3C to be used for studying the composition of cells in less researched organisms. Instead of using reagents that only work for specific species, the tool uses molecules that work across many species, like dyes that stain the cell nucleus. A cell-sorting machine, known as a flow cytometer, connected to a microscope then takes pictures of hundreds of stained cells each second and Image3C groups them based on their appearance, without the need for any prior knowledge about the cell types. Accorsi et al. then tested Image3C on immune system cells of zebrafish, a well-studied animal, and apple snails, an under-studied animal. For both species, the tool was able to sort cells into groups representing different parts of the immune system. Image3C speeds up the grouping process and reduces the need for user intervention and time. This lowers the risk of bias compared to manual counting of cells. It can sort cells even when the types of cells in an organism are unknown and even when specialized reagents for an organism do not exist. This means that it could characterise the cell make-up of new tissues coming from organisms never studied before. Access to this uncharted world of cells stands to reveal previously inaccessible clues about how organs behave and evolve and allow researchers to investigate the impact of environmental changes on these cells.


Assuntos
Citometria por Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Célula Única/métodos , Animais , Citometria de Fluxo/métodos , Água Doce , Hemolinfa , Homeostase , Rim , Redes Neurais de Computação , Fagócitos , Fagocitose , Caramujos , Especificidade da Espécie , Peixe-Zebra
12.
Int J Dev Biol ; 65(1-2-3): 131-136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930375

RESUMO

Claudio Stern was born in Montevideo, Uruguay where he received his school education. He moved to the United Kingdom at age 18. This interview briefly explores his trajectory from Uruguay, through universities in the UK (Sussex, UCL, Cambridge and Oxford) and USA (Columbia) and how he was influenced by various mentors and experiences.


Assuntos
Biologia do Desenvolvimento , História do Século XXI , Humanos
13.
Science ; 369(6508)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32883834

RESUMO

Vertebrates vary in their ability to regenerate, and the genetic mechanisms underlying such disparity remain elusive. Comparative epigenomic profiling and single-cell sequencing of two related teleost fish uncovered species-specific and evolutionarily conserved genomic responses to regeneration. The conserved response revealed several regeneration-responsive enhancers (RREs), including an element upstream to inhibin beta A (inhba), a known effector of vertebrate regeneration. This element activated expression in regenerating transgenic fish, and its genomic deletion perturbed caudal fin regeneration and abrogated cardiac regeneration altogether. The enhancer is present in mammals, shares functionally essential activator protein 1 (AP-1)-binding motifs, and responds to injury, but it cannot rescue regeneration in fish. This work suggests that changes in AP-1-enriched RREs are likely a crucial source of loss of regenerative capacities in vertebrates.


Assuntos
Elementos Facilitadores Genéticos/fisiologia , Evolução Molecular , Peixes Listrados/genética , Peixes Listrados/fisiologia , Regeneração/genética , Motivos de Aminoácidos , Animais , Epigênese Genética , Perfilação da Expressão Gênica , Histonas/metabolismo , Subunidades beta de Inibinas/genética , RNA-Seq , Análise de Célula Única , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
14.
Dev Cell ; 54(6): 805-817.e7, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32768421

RESUMO

Early embryonic development is driven exclusively by maternal gene products deposited into the oocyte. Although critical in establishing early developmental programs, maternal gene functions have remained elusive due to a paucity of techniques for their systematic disruption and assessment. CRISPR-Cas13 systems have recently been employed to degrade RNA in yeast, plants, and mammalian cell lines. However, no systematic study of the potential of Cas13 has been carried out in an animal system. Here, we show that CRISPR-RfxCas13d (CasRx) is an effective and precise system to deplete specific mRNA transcripts in zebrafish embryos. We demonstrate that zygotically expressed and maternally provided transcripts are efficiently targeted, resulting in a 76% average decrease in transcript levels and recapitulation of well-known embryonic phenotypes. Moreover, we show that this system can be used in medaka, killifish, and mouse embryos. Altogether, our results demonstrate that CRISPR-RfxCas13d is an efficient knockdown platform to interrogate gene function in animal embryos.


Assuntos
Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Edição de Genes/métodos , Células HEK293 , Humanos , Interferência de RNA/fisiologia , RNA Mensageiro/genética
15.
16.
BMC Genomics ; 20(1): 909, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783730

RESUMO

BACKGROUND: The astounding regenerative abilities of planarian flatworms prompt steadily growing interest in examining their molecular foundation. Planarian regeneration was found to require hundreds of genes and is hence a complex process. Thus, RNA interference followed by transcriptome-wide gene expression analysis by RNA-seq is a popular technique to study the impact of any particular planarian gene on regeneration. Typically, the removal of ribosomal RNA (rRNA) is the first step of all RNA-seq library preparation protocols. To date, rRNA removal in planarians was primarily achieved by the enrichment of polyadenylated (poly(A)) transcripts. However, to better reflect transcriptome dynamics and to cover also non-poly(A) transcripts, a procedure for the targeted removal of rRNA in planarians is needed. RESULTS: In this study, we describe a workflow for the efficient depletion of rRNA in the planarian model species S. mediterranea. Our protocol is based on subtractive hybridization using organism-specific probes. Importantly, the designed probes also deplete rRNA of other freshwater triclad families, a fact that considerably broadens the applicability of our protocol. We tested our approach on total RNA isolated from stem cells (termed neoblasts) of S. mediterranea and compared ribodepleted libraries with publicly available poly(A)-enriched ones. Overall, mRNA levels after ribodepletion were consistent with poly(A) libraries. However, ribodepleted libraries revealed higher transcript levels for transposable elements and histone mRNAs that remained underrepresented in poly(A) libraries. As neoblasts experience high transposon activity this suggests that ribodepleted libraries better reflect the transcriptional dynamics of planarian stem cells. Furthermore, the presented ribodepletion procedure was successfully expanded to the removal of ribosomal RNA from the gram-negative bacterium Salmonella typhimurium. CONCLUSIONS: The ribodepletion protocol presented here ensures the efficient rRNA removal from low input total planarian RNA, which can be further processed for RNA-seq applications. Resulting libraries contain less than 2% rRNA. Moreover, for a cost-effective and efficient removal of rRNA prior to sequencing applications our procedure might be adapted to any prokaryotic or eukaryotic species of choice.


Assuntos
Planárias/genética , RNA Ribossômico , Análise de Sequência de RNA/métodos , Animais , Sondas de DNA , Salmonella typhimurium/genética
17.
Annu Rev Genet ; 53: 327-346, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31505134

RESUMO

Regeneration is a remarkable phenomenon that has been the subject of awe and bafflement for hundreds of years. Although regeneration competence is found in highly divergent organisms throughout the animal kingdom, recent advances in tools used for molecular and genomic characterization have uncovered common genes, molecular mechanisms, and genomic features in regenerating animals. In this review we focus on what is known about how genome regulation modulates cellular potency during regeneration. We discuss this regulation in the context of complex tissue regeneration in animals, from Hydra to humans, with reference to ex vivo-cultured cell models of pluripotency when appropriate. We emphasize the importance of a detailed molecular understanding of both the mechanisms that regulate genomic output and the functional assays that assess the biological relevance of such molecular characterizations.


Assuntos
Cromatina/genética , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Retroalimentação Fisiológica , Genoma , Histonas/genética , Histonas/metabolismo , Humanos , Hydra/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Células-Tronco/citologia
18.
Genes Dev ; 33(21-22): 1575-1590, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31537626

RESUMO

PIWI proteins utilize small RNAs called piRNAs to silence transposable elements, thereby protecting germline integrity. In planarian flatworms, PIWI proteins are essential for regeneration, which requires adult stem cells termed neoblasts. Here, we characterize planarian piRNAs and examine the roles of PIWI proteins in neoblast biology. We find that the planarian PIWI proteins SMEDWI-2 and SMEDWI-3 cooperate to degrade active transposons via the ping-pong cycle. Unexpectedly, we discover that SMEDWI-3 plays an additional role in planarian mRNA surveillance. While SMEDWI-3 degrades numerous neoblast mRNAs in a homotypic ping-pong cycle, it is also guided to another subset of neoblast mRNAs by antisense piRNAs and binds these without degrading them. Mechanistically, the distinct activities of SMEDWI-3 are primarily dictated by the degree of complementarity between target mRNAs and antisense piRNAs. Thus, PIWI proteins enable planarians to repurpose piRNAs for potentially critical roles in neoblast mRNA turnover.


Assuntos
Células-Tronco Adultas/metabolismo , Proteínas de Helminto/metabolismo , Planárias/citologia , Planárias/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Pareamento de Bases , Elementos de DNA Transponíveis , Imunoprecipitação , Ligação Proteica , Estabilidade de RNA
19.
Nature ; 572(7771): 655-659, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31413361

RESUMO

Differential coordination of growth and patterning across metazoans gives rise to a diversity of sizes and shapes at tissue, organ and organismal levels. Although tissue size and tissue function can be interdependent1-5, mechanisms that coordinate size and function remain poorly understood. Planarians are regenerative flatworms that bidirectionally scale their adult body size6,7 and reproduce asexually, via transverse fission, in a size-dependent manner8-10. This model offers a robust context to address the gap in knowledge that underlies the link between size and function. Here, by generating an optimized planarian fission protocol in Schmidtea mediterranea, we show that progeny number and the frequency of fission initiation are correlated with parent size. Fission progeny size is fixed by previously unidentified mechanically vulnerable planes spaced at an absolute distance along the anterior-posterior axis. An RNA interference screen of genes for anterior-posterior patterning uncovered components of the TGFß and Wnt signalling pathways as regulators of the frequency of fission initiation rather than the position of fission planes. Finally, inhibition of Wnt and TGFß signalling during growth altered the patterning of mechanosensory neurons-a neural subpopulation that is distributed in accordance with worm size and modulates fission behaviour. Our study identifies a role for TGFß and Wnt in regulating size-dependent behaviour, and uncovers an interdependence between patterning, growth and neurological function.


Assuntos
Padronização Corporal/fisiologia , Tamanho Corporal/fisiologia , Planárias/crescimento & desenvolvimento , Planárias/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal/genética , Tamanho Corporal/genética , Sistema Nervoso Central/citologia , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Planárias/anatomia & histologia , Planárias/citologia , Interferência de RNA , Reprodução Assexuada/fisiologia , Via de Sinalização Wnt/genética
20.
Mol Biol Evol ; 36(7): 1507-1520, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30980073

RESUMO

The family Ampullariidae includes both aquatic and amphibious apple snails. They are an emerging model for evolutionary studies due to the high diversity, ancient history, and wide geographical distribution. Insight into drivers of ampullariid evolution is hampered, however, by the lack of genomic resources. Here, we report the genomes of four ampullariids spanning the Old World (Lanistes nyassanus) and New World (Pomacea canaliculata, P. maculata, and Marisa cornuarietis) clades. The ampullariid genomes have conserved ancient bilaterial karyotype features and a novel Hox gene cluster rearrangement, making them valuable in comparative genomic studies. They have expanded gene families related to environmental sensing and cellulose digestion, which may have facilitated some ampullarids to become notorious invasive pests. In the amphibious Pomacea, novel acquisition of an egg neurotoxin and a protein for making the calcareous eggshell may have been key adaptations enabling their transition from underwater to terrestrial egg deposition.


Assuntos
Adaptação Biológica , Genoma , Espécies Introduzidas , Caramujos/genética , Animais , Genes Homeobox , Cariótipo , Família Multigênica , Oviposição , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...